Some Refinements of Discrete Jensen’s Inequality and Some of Its Applications

نویسنده

  • J. Rooin
چکیده

Jensen’s inequality is sometimes called the king of inequalities [4] because it implies at once the main part of the other classical inequalities (e.g. those by Hölder, Minkowski, Young, and the AGM inequality, etc.). Therefore, it is worth studying it thoroughly and refine it from different points of view. There are numerous refinements of Jensen’s inequality, see e.g. [3-5] and the references in them. In this paper, introducing suitable weight functions, first we give some refinements of discrete Jensen’s inequality, and then using these refinements, we give several important applications in various abstract spaces, which extends the results obtained recently [5,6]. Throughout this paper, we suppose that C is a convex subset of a real vector space, x1, · · · , xn ∈ C, and φ : C → R a convex mapping. Also, we suppose that μ = (μ1, · · · , μm) and λ = (λ1, · · · , λn) are two probability measures; i.e. μi, λj ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n) with

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One Refinement of Jensen’s Discrete Inequality and Applications

Jensen’s inequality induces different forms of functionals which enables refinements for many classic inequalities ([5]). Several refinements of Jensen’s inequalities were given in [4]. In this paper we refine Jensen’s inequality by separating a discrete domain of it. At the end, we give some applications. Mathematics subject classification (2000): 26D15.

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

Ela Choi-davis-jensen’s Inequality and Generalized Inverses of Linear Operators∗

In this paper, some extensions of recent results on Choi-Davis-Jensen’s inequality due to Khosravi et al. [M. Khosravi, J.S. Aujla, S.S. Dragomir, and M.S. Moslehian. Refinements of ChoiDavis-Jensen’s inequality. Bulletin of Mathematical Analysis and Applications, 3:127–133, 2011.] and Fujii et al. [J.-I. Fujii, J. Pečarić, and Y. Seo. The Jensen inequality in an external formula. Journal of Ma...

متن کامل

Choi-Davis-Jensen's inequality and generalized inverses of linear operators

In this paper, some extensions of recent results on Choi-Davis-Jensen’s inequality due to Khosravi et al. [M. Khosravi, J.S. Aujla, S.S. Dragomir, and M.S. Moslehian. Refinements of ChoiDavis-Jensen’s inequality. Bulletin of Mathematical Analysis and Applications, 3:127–133, 2011.] and Fujii et al. [J.-I. Fujii, J. Pečarić, and Y. Seo. The Jensen inequality in an external formula. Journal of Ma...

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006